Affiliation:
1. School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing, China
Abstract
Fuzzy clustering has been widely applied in T-S fuzzy model identification for nonlinear systems, however, tradition type-1 fuzzy clustering algorithms can’t deal with uncertainties in real world, an improved interval type-2 fuzzy c-regression model (IT2-FCRM) clustering is proposed for T-S fuzzy model identification in this paper. The improved IT2-FCRM adapts a new objective function, which makes the boundary of clustering more clearly and reduces the influence of outliers or noisy data on clustering results. The premise parameters of T-S fuzzy model are upper and lower hyperplanes obtained by improved IT2-FCRM, and the upper and lower hyperplanes are used to build hyper-plane-shaped type-2 Gaussian membership function. Compared with the hyper-sphere-shaped membership function of tradition IT2-FCRM, the hyper-plane-shaped membership function is more coincided with point to plane sample distance described by FCRM clustering. The simulation results of several benchmark problems and a real bed temperature in circulating fluidized bed plant show that the identification algorithm has higher accuracy.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Stabilization of Memristor-Based Chua's Oscillator via T-S Fuzzy Modeling and Three-Stage-Impulse Control;2023 2nd International Conference on Machine Learning, Cloud Computing and Intelligent Mining (MLCCIM);2023-07-25