Mitochondrial Targeting of Amyloid-β Protein Precursor Intracellular Domain Induces Hippocampal Cell Death via a Mechanism Distinct from Amyloid-β

Author:

Sandberg Alexandra A.1,Manning Evan1,Wilkins Heather M.12,Mazzarino Randall1,Minckley Taylor1,Swerdlow Russell H.2,Patterson David3,Qin Yan1,Linseman Daniel A.13

Affiliation:

1. Department of Biological Sciences, University of Denver, Denver, CO, USA

2. Department of Neurology, University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, Kansas City, KS, USA

3. Knoebel Institute for Healthy Aging and Eleanor Roosevelt Institute, University of Denver, Denver, CO, USA

Abstract

Background: Amyloid-β (Aβ) is a principal cleavage product of amyloid-β protein precursor (AβPP) and is widely recognized as a key pathogenic player in Alzheimer’s disease (AD). Yet, there is increasing evidence of a neurotoxic role for the AβPP intracellular domain (AICD) which has been proposed to occur through its nuclear function. Intriguingly, there is a γ-secretase resident at the mitochondria which could produce AICD locally. Objective: We examined the potential of AICD to induce neuronal apoptosis when targeted specifically to the mitochondria and compared its mechanism of neurotoxicity to that of Aβ. Methods: We utilized transient transfection of HT22 neuronal cells with bicistronic plasmids coding for DsRed and either empty vector (Ires), Aβ, AICD59, or mitochondrial-targeted AICD (mitoAICD) in combination with various inhibitors of pathways involved in apoptosis. Results: AICD induced significant neuronal apoptosis only when targeted to the mitochondria. Apoptosis required functional mitochondria as neither Aβ nor mitoAICD induced significant toxicity in cells devoid of mitochondrial DNA. Both glutathione and a Bax inhibitor protected HT22 cells from either peptide. However, inhibition of the mitochondrial permeability transition pore only protected from Aβ, while pan-caspase inhibitors uniquely rescued cells from mitoAICD. Conclusion: Our results show that AICD displays a novel neurotoxic function when targeted to mitochondria. Moreover, mitoAICD induces apoptosis via a mechanism that is distinct from that of Aβ. These findings suggest that AICD produced locally at mitochondria via organelle-specific γ-secretase could act in a synergistic manner with Aβ to cause mitochondrial dysfunction and neuronal death in AD.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3