BACE1 Inhibitors for Alzheimer’s Disease: Current Challenges and Future Perspectives

Author:

Coimbra Judite R.M.12,Resende Rosa23,Custódio José B.A.24,Salvador Jorge A.R.12ORCID,Santos Armanda E.24ORCID

Affiliation:

1. Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal

2. Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal

3. Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal

4. Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal

Abstract

Disease-modifying therapies (DMT) for Alzheimer’s disease (AD) are highly longed-for. In this quest, anti-amyloid therapies take center stage supported by genetic facts that highlight an imbalance between production and clearance of amyloid-β peptide (Aβ) in AD patients. Indeed, evidence from basic research, human genetic and biomarker studies, suggests the accumulation of Aβ as a driver of AD pathogenesis and progression. The aspartic protease β-site AβPP cleaving enzyme (BACE1) is the initiator for Aβ production. Underpinning a critical role for BACE1 in AD pathophysiology are the elevated BACE1 concentration and activity observed in the brain and body fluids of AD patients. Therefore, BACE1 is a prime drug target for reducing Aβ levels in early AD. Small-molecule BACE1 inhibitors have been extensively developed for the last 20 years. However, clinical trials with these molecules have been discontinued for futility or safety reasons. Most of the observed adverse side effects were due to other aspartic proteases cross-inhibition, including the homologue BACE2, and to mechanism-based toxicity since BACE1 has substrates with important roles for synaptic plasticity and synaptic homeostasis besides amyloid-β protein precursor (AβPP). Despite these setbacks, BACE1 persists as a well-validated therapeutic target for which a specific inhibitor with high substrate selectivity may yet to be found. In this review we provide an overview of the evolution in BACE1 inhibitors design pinpointing the molecules that reached advanced phases of clinical trials and the liabilities that precluded adequate trial effects. Finally, we ponder on the challenges that anti-amyloid therapies must overcome to achieve clinical success.

Publisher

IOS Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3