HER2-ResNet: A HER2 classification method based on deep residual network

Author:

Wang Xingang1,Shao Cuiling1,Liu Wensheng1,Liang Hu1,Li Na2

Affiliation:

1. School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China

2. Shandong Computer Science Center (National Supercomputing Center in Jinan), Jinan, Shandong, China

Abstract

BACKGROUND: HER2 gene expression is one of the main reference indicators for breast cancer detection and treatment, and it is also an important target for tumor targeted therapy drug selection. Therefore, the correct detection and evaluation of HER2 gene expression has important value for clinical treatment of breast cancer. OBJECTIVE: The study goal is to better classify HER2 images. METHODS: For general convolution neural network, with the increase of network layers, over fitting phenomenon is often very serious, which requires setting the value of random descent ratio, and parameter adjustment is often time-consuming and laborious, so this paper uses residual network, with the increase of network layer, the accuracy will not be reduced. RESULTS: In this paper, a HER2 image classification algorithm based on improved residual network is proposed. Experimental results show that the proposed HER2 network has high accuracy in breast cancer assessment. Conclusion: Taking HER2 images in Stanford University database as experimental data, the accuracy of HER2 image automatic classification is improved through experiments. This method will help to reduce the detection intensity and improve the accuracy of HER2 image classification.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3