Isolation design and numerical calculation of isolated rubber bearing in continuous beam bridge in high seismic intensity area

Author:

Pan Deng1,Zhang Tao1

Affiliation:

1. , Henan College of Transportation, , , China

Abstract

The stability of bridges in the face of earthquake hazards has always been the focus of construction engineering. At present, a large number of bridge construction has begun to use isolation rubber bearings to increase the seismic capacity of bridges. However, in the face of high-intensity earthquake disasters, the seismic performance of the bridge is gradually unable to meet, the main reason is the lack of relevant research on the seismic performance of the bridge in high seismic intensity area. Therefore, this study will explore the changes of the bridge in the face of high-strength earthquake, and try to use high damping rubber bearings for the isolation design of the bridge. By establishing the finite element model of continuous bridge combined with isolation rubber bearing, the numerical calculation of bridge element is carried out on this basis, and the isolation effect of isolation rubber bearing is analyzed. The results show that the compression resistance and shear resistance of the isolated rubber bearing are strong. Under the influence of different seismic waves, the maximum displacement of the bearing is 0.131 m and the maximum horizontal force is 389.6 kN, which are lower than the allowable value of the bridge, and the overall seismic performance of the bridge has been significantly improved, which can play a good theoretical support in the construction of continuous bridges in high seismic intensity areas.

Publisher

IOS Press

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference17 articles.

1. Seismic fragility assessment of multi-span concrete highway bridges in British Columbia considering soil–structure interaction;Billah;Canadian Journal of Civil Engineering,2020

2. Comparing rubber bearings and eradi-quake system for seismic isolation of bridges;Chang;Materials,2020

3. System fragility assessment of tall-pier bridges subjected to near-fault ground motions;Chen;Journal of Bridge Engineering,2019

4. Impact of seismic excitation direction on the fragility analysis of horizontally curved concrete bridges;Feng;Bulletin of Earthquake Engineering,2018

5. Experimental determination of the lateral stability and shear failure limit states of bridge rubber bearings;Gauron;Engineering Structures,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3