Online course evaluation model based on graph auto-encoder

Author:

Yuan Wei1,Zhao Shiyu2,Wang Li1,Cai Lijia2,Zhang Yong2

Affiliation:

1. School of Computer Science, The Open University of China, Beijing, China

2. Beijing Key Laboratory of multimedia and Intelligent Software Technology, Beijing Institute of Artificial Intelligence, Department of Information Science, Beijing University of Technology, Beijing, China

Abstract

In the post-epidemic era, online learning has gained increasing attention due to the advancements in information and big data technology, leading to large-scale online course data with various student behaviors. Online data mining has become a popular and important way of extracting valuable insights from large amounts of data. However, previous online course analysis methods often focused on individual aspects of the data and neglected the correlation among the large-scale learning behavior data, which can lead to an incomplete understanding of the overall learning behavior and patterns within the online course. To solve the problems, this paper proposes an online course evaluation model based on a graph auto-encoder. In our method, the features of collected online course data are used to construct K-Nearest Neighbor(KNN) graphs to represent the association among the courses. Then the variational graph auto-encoder(VGAE) is introduced to learn the useful implicit features. Finally, we feed the learned implicit features into unsupervised and semi-supervised downstream tasks for online course evaluation, respectively. We conduct experiments on two datasets. In the clustering task, our method showed a more than tenfold increase in the Calinski-Harabasz index compared to unoptimized features, demonstrating significant structural distinction and group coherence. In the classification task, compared to traditional methods, our model exhibited an overall performance improvement of about 10%, indicating its effectiveness in handling complex network data.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3