Indonesian GDP movement detection using online news classification

Author:

Sholawatunnisa Dinda Pusparahmi1,Suadaa Lya Hulliyyatus12,Nugraha Usep2,Pramana Setia12

Affiliation:

1. Politeknik Statistika STIS, Jakarta, Indonesia

2. BPS Statistics Indonesia, Jakarta, Indonesia

Abstract

Gross Domestic Product (GDP) stands as a pivotal indicator, offering strategic insights into economic dynamics. Recent technological advancements, particularly in real-time information dissemination through online economic news platforms, provide an accessible and alternative data source for analyzing GDP movements. This study employs online news classification to identify patterns in the movement and growth rate of Indonesia’s GDP. Utilizing a web scraping technique, we collected data for analysis. The classification models employed include transfer learning from pre-trained language model transformers, with classical machine learning methods serving as baseline models. The results indicate superior performance by the pre-trained language model transformers, achieving the highest accuracy of 0.8880 and 0.7899. In comparison, hyperparameter-tuned classical machine learning models also demonstrated commendable results, with the best accuracy reaching 0.845 and 0.7811. This research underscores the efficacy of leveraging online news classification, particularly through advanced language models. The findings contribute to a nuanced understanding of economic dynamics, aligning with the contemporary landscape of information accessibility and technological progress.

Publisher

IOS Press

Reference34 articles.

1. Impact of COVID-19 on the world economy;Manna;Journal of Climate Change,2023

2. The economic impact of recession announcements;Eggers;Journal of Monetary Economics,2021

3. BPS. Produk Domestik Bruto Indonesia Triwulanan 2017–2021. Badan Pusat Statistik. 2021.

4. Mankiw G, Quah E, Wilson P. Pengantar Ekonomi Makro, Edisi Ketiga, Salemba Empat. Jakarta. ISBN: 9789790613560.

5. Robust official business statistics methodology during COVID-19-related and other economic downturns;Smith;Statistical Journal of the IAOS,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3