Developing Team Design Patterns for Hybrid Intelligence Systems

Author:

Van Zoelen Emma12ORCID,Mioch Tina13ORCID,Tajaddini Mani1ORCID,Fleiner Christian4ORCID,Tsaneva Stefani56ORCID,Camin Pietro7ORCID,Gouvêa Thiago S.8ORCID,Baraka Kim9ORCID,De Boer Maaike H. T.2ORCID,Neerincx Mark A.12ORCID

Affiliation:

1. Delft University of Technology, the Netherlands

2. TNO, the Netherlands

3. University of Applied Sciences Utrecht, the Netherlands

4. Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

5. Vienna University of Economics and Business, Austria

6. TU Wien, Austria

7. University of Twente, the Netherlands

8. German Research Center for Artificial Intelligence (DFKI), Germany

9. VU Amsterdam, the Netherlands

Abstract

With artificial intelligence (AI) systems entering our working and leisure environments with increasing adaptation and learning capabilities, new opportunities arise for developing hybrid (human-AI) intelligence (HI) systems, comprising new ways of collaboration. However, there is not yet a structured way of specifying design solutions of collaboration for hybrid intelligence (HI) systems and there is a lack of best practices shared across application domains. We address this gap by investigating the generalization of specific design solutions into design patterns that can be shared and applied in different contexts. We present a human-centered bottom-up approach for the specification of design solutions and their abstraction into team design patterns. We apply the proposed approach for 4 concrete HI use cases and show the successful extraction of team design patterns that are generalizable, providing re-usable design components across various domains. This work advances previous research on team design patterns and designing applications of HI systems.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3