Differential Gene Expression Data Analysis of ASD Using Random Forest

Author:

Pragya 1ORCID,Govarthan Praveen Kumar1,Sinha Kshitij2,Mukherjee Sudip1,Agastinose Ronickom Jac Fredo1

Affiliation:

1. School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India

2. School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India

Abstract

Autism spectrum disorder (ASD) is a developmental disability caused by differences in the brain regions. Analysis of differential expression (DE) of transcriptomic data allows for genome-wide analysis of gene expression changes related to ASD. De-novo mutations may play a vital role in ASD, but the list of genes involved is still far from complete. Differentially expressed genes (DEGs) are treated as candidate biomarkers and a small set of DEGs might be identified as biomarkers using either biological knowledge or data-driven approaches like machine learning and statistical analysis. In this study, we employed a machine learning-based approach to identify the differential gene expression between ASD and Typical Development (TD). The gene expression data of 15 ASD and 15 TD were obtained from the NCBI GEO database. Initially, we extracted the data and used a standard pipeline to pre-process the data. Further, Random Forest (RF) was used to discriminate genes between ASD and TD. We identified the top 10 prominent differential genes and compared them with the statistical test results. Our results show that the proposed RF model yields 5-fold cross-validation accuracy, sensitivity and specificity of 96.67%. Further, we obtained precision and F-measure scores of 97.5% and 96.57%, respectively. Moreover, we found 34 unique DEG chromosomal locations having influential contributions in identifying ASD from TD. We have also identified chr3:113322718-113322659 as the most significant contributing chromosomal location in discriminating ASD and TD. Our machine learning-based method of refining DE analysis is promising for finding biomarkers from gene expression profiles and prioritizing DEGs. Moreover, our study reported top 10 gene signatures for ASD may facilitate the development of reliable diagnosis and prognosis biomarkers for screening ASD.

Publisher

IOS Press

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3