A novel nearest neighbors algorithm based on power muirhead mean

Author:

Shahnazari Kourosh,Ayyoubzadeh Seyed Moein

Abstract

This paper introduces the innovative Power Muirhead Mean K-Nearest Neighbors (PMM-KNN) algorithm, a novel data classification approach that combines the K-Nearest Neighbors method with the adaptive Power Muirhead Mean operator. The proposed methodology aims to address the limitations of traditional KNN by leveraging the Power Muirhead Mean for calculating the local means of K-nearest neighbors in each class to the query sample. Extensive experimentation on diverse benchmark datasets demonstrates the superiority of PMM-KNN over other classification methods. Results indicate statistically significant improvements in accuracy on various datasets, particularly those with complex and high-dimensional distributions. The adaptability of the Power Muirhead Mean empowers PMM-KNN to effectively capture underlying data structures, leading to enhanced accuracy and robustness. The findings highlight the potential of PMM-KNN as a powerful and versatile tool for data classification tasks, encouraging further research to explore its application in real-world scenarios and the automation of Power Muirhead Mean parameters to unleash its full potential.

Publisher

IOS Press

Reference14 articles.

1. Afuzzy K-nearest neighbor algorithm;Keller;IEEE Transactions on Systems, Man, and Cybernetics,1985

2. Small sample size effects in statistical pattern recognition: Recommendations for practitioners;Raudys;IEEE Transactions on pattern analysis and machine intelligence,1991

3. Nearest neighbor pattern classification;Cover;IEEE transactions on information theory,1967

4. Fukunaga K. Introduction to statistical pattern recognition. Elsevier; 2013.

5. Alternative k-nearest neighbour rules insupervised pattern recognition: Part1. k-Nearest neighbour classification by using alternative voting rules;Coomans;Analytica Chimica Acta,1982

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3