Novel U-net based deep neural networks for transmission tomography

Author:

Olasz Csaba1,Varga László G.1,Nagy Antal1

Affiliation:

1. University of Szeged, 6720, Szeged, Hungary

Abstract

BACKGROUND: The fusion of computer tomography and deep learning is an effective way of achieving improved image quality and artifact reduction in reconstructed images. OBJECTIVE: In this paper, we present two novel neural network architectures for tomographic reconstruction with reduced effects of beam hardening and electrical noise. METHODS: In the case of the proposed novel architectures, the image reconstruction step is located inside the neural networks, which allows the network to be trained by taking the mathematical model of the projections into account. This strong connection enables us to enhance the projection data and the reconstructed image together. We tested the two proposed models against three other methods on two datasets. The datasets contain physically correct simulated data, and they show strong signs of beam hardening and electrical noise. We also performed a numerical evaluation of the neural networks on the reconstructed images according to three error measurements and provided a scoring system of the methods derived from the three measures. RESULTS: The results showed the superiority of the novel architecture called TomoNet2. TomoNet2 improved the quality of the images according to the average Structural Similarity Index from 0.9372 to 0.9977 and 0.9519 to 0.9886 on the two data sets, when compared to the FBP method. This network also yielded the best results for 79.2 and 53.0 percent for the two datasets according to Peak-Signal-to-Noise-Ratio compared to the other improvement techniques. CONCLUSIONS: Our experimental results showed that the reconstruction step used in skip connections in deep neural networks improves the quality of the reconstructions. We are confident that our proposed method can be effectively applied to other datasets for tomographic purposes.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3