Mechanical characteristics and parametric analysis of carbon fiber wound hydrogen cylinder for vehicles

Author:

Zhang J.12,Jiang W.J.2,Yang R.2

Affiliation:

1. , , China

2. , Southwest Petroleum University, , China

Abstract

High pressure hydrogen storage is one of the most important ways of hydrogen energy storage and transportation. As the core component of high-pressure hydrogen storage, service strength and bearing capacity of carbon fiber wound hydrogen cylinder are very important for the safe transportation of hydrogen. In this paper, the simulation model of carbon fiber wound hydrogen cylinder is established, the stress distributions of Al-liner and winding layer are studied, and effects of self-tightening pressure, winding angle and thickness of winding layer on the stress distribution of hydrogen cylinder are studied. The results show that the designed carbon fiber wound cylinder meets the working requirements of 35 MPa. The self-tightening pressure can reduce the Al-liner stress in the working state and improve the utilization rate of the winding layer. With the use of hydrogen cylinders, the internal pressure decreases, and the maximum stress of the cylinders' middle part first decreases and then increases. The principal stress of winding layer decreases with the decrease of internal pressure. Increasing the winding angle of spiral layer can reduce the stress of Al-liner and the principal stress of hoop winding layer, but the principal stress of helix winding layer increases. With the increasing winding layer thickness, the hydrogen cylinder stress decreases gradually.

Publisher

IOS Press

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference13 articles.

1. Optimal design of a Type 3 hydrogen vessel: Part I-Analytic modeling of the cylindrical section;Chapelle;Internaltional Journal of Hydrogen Energy,2006

2. Design analysis on the filament-wound gas cylinder;Chen;Journal of Solid Rocket Technology,2008

3. Firstply failure strength of laminated composite pressure vessel;Kam;Composite Structure,1997

4. An experimental investigation on the effect of multi-angle filament winding on the strength of tubular composite structures;Mertiny;Composites Science & Technology,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3