Evaluating the efficacy of the punch-out technique in systemic-to-pulmonary shunts: A computational fluid dynamics approach

Author:

Yamazaki Shiho1,Kowatari Ryosuke1,Yano Tetsuya2,Sasaki Hanae1,Daitoku Kazuyuki1,Minakawa Masahito1

Affiliation:

1. Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine, Hirosaki University, , Japan

2. , Hirosaki University, , Japan

Abstract

BACKGROUND: Systemic-to-pulmonary shunt is a palliative procedure used to decrease pulmonary blood flow in congenital heart diseases. Shunt stenosis or occlusion has been reported to be associated with mortality; therefore, the management of thrombotic complications remains a challenge for most congenital cardiovascular surgeons. Despite its importance, the optimal method for shunt anastomosis remains unclear. OBJECTIVE: The study investigates the clinical benefits of the punch-out technique over conventional methods in the anastomosis process of Systemic-to-pulmonary shunt, focusing on its potential to reduce shunt-related complications. METHODS: Anastomotic models were created by two different surgeons employing both traditional slit and innovative punch-out techniques. Computational tomography was performed to construct three-dimensional models for computational fluid dynamics (CFD) analysis. We assessed the flow pattern, helicity, magnitude of wall shear stress, and its gradient. RESULTS: The anastomotic flow area was larger in the model using the punch-out technique than in the slit model. In CFD simulation, we found that using the punch-out technique decreases the likelihood of establishing a high wall shear stress distribution around the anastomosis line in the model. CONCLUSION: The punch-out technique emerges as a promising method in SPS anastomosis, offering a reproducible and less skill-dependent alternative that potentially diminishes the risk of shunt occlusion, thereby enhancing patient outcomes.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3