Towards In-Line Measurements of Sawn Wood Surfaces

Author:

Rebeggiani Sabina1ORCID,Reddy Vijeth1,Olofsson Linus2,Fredriksson Magnus2

Affiliation:

1. Halmstad University, Sweden

2. Luleå University of Technology, Sweden

Abstract

Metrology and characterisation of products’ functional surfaces are of key importance in smart and sustainable manufacturing. By proper measures of resulting topography and dimension at the micro-cm level, higher process control can be achieved, leading to more efficient production with products closer to defined targets. Commercial surface metrology systems for lab- and in/on-line applications have increased in the last decades, but the wood sector has not yet benefited from this development. A better understanding of sawn wood topography combined with smart online metrology systems is expected to lead to a substantial reduction of waste in sawmill production, both by transforming waste pieces and sideboards into engineered wood products and by optimising the sawing process (e.g. by using thinner saw blades and reduced tolerances). It would also open new design possibilities and challenge the construction sector to replace today’s materials with renewable raw materials. Additionally, sawmills will be less dependent on incoming timber dimensions. This study is the first step towards a better understanding of sawn wood topography and how relevant surface features can be detected and analysed to enable the next generation of functional wood surfaces for various applications. By identifying the measuring instrument’s capability to capture surface topographical features of sawn wood, this paper discusses the requirements for efficient measurement techniques. It opens for future implementation of machine learning algorithms to in-line monitor and control the machining process. All tested metrology techniques showed promising results. To capture machining marks, the instrumentation needs to have lateral resolutions on the um level and a measurement area covering some cm; thus, the laser scanning system seemed to be a good compromise.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3