A System Architecture for Continuous Manufacturing Decision Support Using Knowledge Generated from Multi-Level Simulation-Based Optimization

Author:

Lidberg Simon12ORCID,Ng Amos H.C.13ORCID

Affiliation:

1. School of Engineering Science, University of Skövde, Skövde, Sweden

2. Powertrain Production, Volvo Group Trucks Operations, Skövde, Sweden

3. Division of Industrial Engineering and Management, Uppsala University, Box 534, 751 21, Uppsala, Sweden

Abstract

Manufacturing is becoming increasingly complex as product life cycles shorten, and new disruptive technologies are introduced. The increased complexity in the manufacturing footprint also complicates industrial decision-making. Proposed improvements to alleviate bottlenecks do not guarantee effective problem resolution. Instead, improvement efforts can become misguided, targeting a bottleneck that affects a single production line rather than the entire site. An effective method for identifying production issues and predicting system performance is discrete-event simulation. When coupled with multi-objective optimization and multi-level modeling, production performance issues can be identified at both the site and workstation levels. However, optimization studies yield vast amounts of data, which can be challenging to extract useful knowledge from. To address this, we employ data-mining methods to assist decision-makers in extracting valuable insights from optimization data. This study presents an architecture for a decision support system that utilizes simulation-based optimization to continuously aid in industrial decision-making. Through a novel model generation method, simulation models are automatically generated and updated using logged data from the manufacturing shop floor and product lifecycle management systems. To reduce the computational complexity of the optimization, model simplification, varying replication numbers, surrogate modeling, and parallel computing in the cloud are also employed within this architecture. The results are presented to a decision-maker in an intelligent decision-support system, allowing for timely and relevant industrial decisions.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3