Combining Ontology and Large Language Models to Identify Recurring Machine Failures in Free-Text Fields

Author:

Bengtsson Marcus12ORCID,D’Cruze Ricky Stanley2,Ahmed Mobyen Uddin2,Sakao Tomohiko3,Funk Peter2,Sohlberg Rickard2

Affiliation:

1. Volvo Construction Equipment Operations Eskilstuna Sweden

2. School of Innovation, Design and Engineering, Mälardalen University

3. Department of Management and Engineering, Linköping University

Abstract

Companies must enhance total maintenance effectiveness to stay competitive, focusing on both digitalization and basic maintenance procedures. Digitalization offers technologies for data-driven decision-making, but many maintenance decisions still lack a factual basis. Prioritizing efficiency and effectiveness require analyzing equipment history, facilitated by using Computerized Maintenance Management Systems (CMMS). However, CMMS data often contains unstructured free-text, leading to manual analysis, which is resource-intensive and reactive, focusing on short time periods and specific equipment. Two approaches are available to solve the issue: minimizing free-text entries or using advanced methods for processing them. Free-text allows detailed descriptions but may lack completeness, while structured reporting aids automated analysis but may limit fault description richness. As knowledge and experience are vital assets for companies this research uses a hybrid approach by combining Natural Language Processing with domain specific ontology and Large Language Models to extract information from free-text entries, enabling the possibility of real-time analysis e.g., identifying recurring failure and knowledge sharing across global sites.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3