The Creation of a Multi-User Virtual Training Environment for Operator Training in VR

Author:

Söderlund Henrik1ORCID,Zamola Sebastian1,Boström Jim1,Li Dan2,Mugur Puranjay2,Cao Huizhong1,Johansson Björn1

Affiliation:

1. Chalmers University of Technology, Chalmersplatsen 4, Gothenburg 412 96, Sweden

2. Volvo Car Corporation, Gunnar Engellaus väg 8, Gothenburg 418 78, Sweden

Abstract

Many industries are today heavily exposed to competition which increases the demand for continuous innovations, faster product changes and continued improvements, this is especially true for the automotive industry. Such demands raise the complexity and set a need for continuous training and development of our operators and assembly personnel to keep up with new designs and product changes. This, in combination with an aging population and a growing shortage of experienced assembly workers, increases the need for efficient training capabilities.Today most of the operator training is supervisor driven and takes place in the live production environment working with real products. This approach might introduce uncertainties and a risk to the production system as less experienced workers, still in training, might jeopardize quality, ramp ups and takt time. With the rise of virtual reality there are growing possibilities to carry out these training sessions in a more secure, non-disruptive, virtual environment without jeopardizing ramp ups, takt time or quality. This paper evaluates the possibility to introduce virtual multi-user operator training as an alternative to traditional supervised “on-site” training for assembly workers. Recreation of different assembly task from an automotive case company was created in virtual reality while introducing multi-user functionality to allow multiple operators and supervisors to observe, instruct and evaluate the performance of the operator in training. The developed demonstrator is used as the discussion basis throughout a focus group interview study with selected participants from an OEM case company and the potential of a multi-user virtual reality application as a complement for traditional operator training in operator training is discussed and future research directions for multi-user virtual reality trainings at OEMs is presented.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3