A Set-theoretic Approach to Reasoning Services for the Description Logic 𝒟 ℒ D 4,×

Author:

Cantone Domenico1,Nicolosi-Asmundo Marianna1,Santamaria Daniele Francesco1

Affiliation:

1. Department of Mathematics and Computer Science, University of Catania, Italy. cantone@dmi.unict.it, nicolosi@dmi.unict.it, santamaria@dmi.unict.it

Abstract

In this paper we consider the most common TBox and ABox reasoning services for the description logic 𝒟ℒ〈4LQSR,x〉(D) ( 𝒟 ℒ D 4,× , for short) and prove their decidability via a reduction to the satisfiability problem for the set-theoretic fragment 4LQSR. 𝒟 ℒ D 4,× is a very expressive description logic. It combines the high scalability and efficiency of rule languages such as the SemanticWeb Rule Language (SWRL) with the expressivity of description logics. In fact, among other features, it supports Boolean operations on concepts and roles, role constructs such as the product of concepts and role chains on the left-hand side of inclusion axioms, role properties such as transitivity, symmetry, reflexivity, and irreflexivity, and data types. We further provide a KE-tableau-based procedure that allows one to reason on the main TBox and ABox reasoning tasks for the description logic 𝒟 ℒ D 4,× . Our algorithm is based on a variant of the KE-tableau system for sets of universally quantified clauses, where the KE-elimination rule is generalized in such a way as to incorporate the γ-rule. The novel system, called KEγ-tableau, turns out to be an improvement of the system introduced in [1] and of standard first-order KE-tableaux [2]. Suitable benchmark test sets executed on C++ implementations of the three mentioned systems show that in several cases the performances of the KEγ-tableau-based reasoner are up to about 400% better than the ones of the other two systems.

Publisher

IOS Press

Subject

Computational Theory and Mathematics,Information Systems,Algebra and Number Theory,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3