Data mining model for predicting the quality level and classification of construction projects

Author:

Fan Ching-Lung1

Affiliation:

1. Department of Civil Engineering, the Republic of China Military Academy, Fengshan, Kaohsiung, Taiwan

Abstract

Project managers supervise projects to ensure their smooth completion within a stipulated time frame and budget while guaranteeing construction quality. The relationships of various attributes with quality can be quantified and classified to facilitate such supervision. Therefore, this study used a data mining algorithm to analyze the relationships between defects, quality levels, contract sums, project categories, and progress in 1,015 inspection projects. In the first part, association rule mining (ARM), an unsupervised data mining approach, was used to obtain 11 rules relating two defect types (i.e., quality management system and construction quality) and determine the relationships between the four attributes (i.e., quality level, contract sum, project category, and progress). The resulting association rule may be beneficial for construction management because project managers can use it to determine the correlations between defects and attributes. In the second part, supervised data mining techniques, namely neural network (NN), support vector machine (SVM), and decision tree (C5.0 and QUEST) algorithms, were applied to develop a classification model for quality prediction. The target variable was quality, which was divided into four levels, and the decision variables comprised 499 defects, 3 contract sums, 7 project categories, and 2 progress variables. The results indicated that five defects were important. Finally, the four indicators of gain chart, break-even point (BEP), accuracy, and area under the curve (AUC) were calculated to evaluate the model. For the SVM model, the actual value predicted by the gain chart was 96.04%, the BEP was 0.95, and the AUC was 0.935. The SVM yielded optimal classification efficiency and effectively predicted the quality level. The data mining model developed in this study can serve as a reference for effective construction management.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference56 articles.

1. Integrating data mining with KJ method toclassify bridge construction defects;Cheng;Expert Systems withApplications,2011

2. The causes and costs of defects inconstruction: A study of seven building projects;Josephson;Automation inConstruction,1999

3. Post-handover housing defects: sources and origins;Forcada;Journal of Performance of Constructed Facilities,2013

4. Defects and rework in new build: and analysis of the phenomenon and drivers;Sommerville;Structural Survey,2007

5. Analysis of the complex mechanismsof defect generation in construction projects;Aljassmi;Journal ofConstruction Engineering and Management,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3