Graph theoretical way of understanding protein-protein interaction in ovarian cancer

Author:

Yegnanarayanan V.1,Krithicaa Narayanaa Y.2,Anitha M.1,Ciurea Rujita3,Marceanu Luigi Geo4

Affiliation:

1. Deapartment of Mathematics, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, India

2. Department of Biomedical Sciences, Sri Ramachandra Institute for Higher Education and Research (DU), Chennai, Tamil Nadu, India

3. Faculty of Medicine, Vasile Goldis Western University of Arad, Arad, Romania

4. Faculty of Medicine, Transilvania University of Brasov, Brasov, Romania

Abstract

Cancer is a major research area in the medical field. Precise assessment of non-similar cancer types holds great significance in according to better treatment and reducing the risk of destructiveness in patients’ health. Cancer comprises a ambient that differs in response to therapy, signaling mechanisms, cytology and physiology. Netting theory and graph theory jointly gives a viable way to probe the proteomic specific data of cancer types such as ovarian, colon, breast, oral, cervical, prostate, and lung. We observe that the P2P(protein-protein) interaction Nettings of the cancerous tissues blended with the seven cancers and normal have same structural attributes. But some of these point to desultory changes from the disease Nettings to normal implying the variation in the dealings and bring out the redoing in the complicacy of various cancers. The Netting-based approach has a pertinent role in precision oncology. Cancer can be better dealt with through mutated pathways or Nettings in preference to individual mutations and that the utility value of repositioned drugs can be understood from disease modules in molecular Nettings. In this paper, we demonstrate how the graph theory and neural Nettings act as vital tools for understanding cancer and other types such as ovarian cancer at the zeroth level.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3