Fast threshold ECDSA with honest majority1

Author:

Damgård Ivan1,Jakobsen Thomas P.2,Nielsen Jesper Buus1,Pagter Jakob Illeborg2,Østergaard Michael Bæksvang2

Affiliation:

1. Department of Computer Science, Aarhus University, Aarhus, Denmark. E-mails: ivan@cs.au.dk, jbn@cs.au.dk

2. Sepior, Aarhus, Denmark. E-mails: tpj@sepior.com, jip@sepior.com, mbo@sepior.com

Abstract

ECDSA is a widely adopted digital signature standard. A number of threshold protocols for ECDSA have been developed that let a set of parties jointly generate the secret signing key and compute signatures, without ever revealing the signing key. Threshold protocols for ECDSA have seen recent interest, in particular due to the need for additional security in cryptocurrency wallets where leakage of the signing key is equivalent to an immediate loss of money. We propose a threshold ECDSA protocol secure against an active adversary in the honest majority model with abort. Our protocol is efficient in terms of both computation and bandwidth usage, and it allows the parties to pre-process parts of the signature, such that once the message to sign becomes known, they can compute a secret sharing of the signature very efficiently, using only local operations. We also show how to obtain guaranteed output delivery (and hence also fairness) in the online phase at the cost of some additional pre-processing work, i.e., such that it either aborts during the pre-processing phase, in which case nothing is revealed, or the signature is guaranteed to be delivered to all honest parties online.

Publisher

IOS Press

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unstoppable Wallets: Chain-assisted Threshold ECDSA and its Applications;Proceedings of the 19th ACM Asia Conference on Computer and Communications Security;2024-07

2. Completely FROST-ed: IoT issued FROST signature for Hyperledger Fabric blockchain;2024 IEEE International Conference on Blockchain and Cryptocurrency (ICBC);2024-05-27

3. Circulation of legitimate information over VANETs using threshold signature scheme;Cluster Computing;2024-02-25

4. Fast 2-out-of-n ECDSA Threshold Signature;2023 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom);2023-12-21

5. Experimental Analysis of the Recent Key Recovery Protocol with respect to Commitment Schemes;2023 14th International Conference on Information and Communication Technology Convergence (ICTC);2023-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3