Towards a New Algebraic Foundation of Flowchart Scheme Theory

Author:

Căzănescu Virgil Emil1,Ştefănescu Gheorghe2

Affiliation:

1. Faculty of Mathematics, University of Bucharest, Str. Academiei 14, 70109 Bucharest, Romania

2. Department of Mathematics, The National Institute for Scientific and Technical Creation, Bd. Păcii 220, 79622 Bucharest, Romania

Abstract

We develope a formalism for the algebraic study of flowchart schemes and their behaviours, based on a new axiomatic looping operation, called feedback. This formalism is based on certain flownomial expressions. Such an expression is built up from two types of atomic schemes (i.e., elements in a double-ranked set X considered as unknown computation processes, and elements in a “theory” T considered as known computation processes) by using three operations: sum, composition, and feedback. Flownomial expressions are subject to certain rules of identification. The axiomatization of flowchart schemes is based on the fact that a flowchart scheme may be identified with a class of isomorphic flownomial expressions in normal form. The corresponding algebra for flowchart schemes is called biflow. This axiomatization is extended to certain types of behaviour. We present axiomatizations for accessible flowchart schemes, reduced flowchart schemes, minimal flowchart schemes with respect to the input behaviour, minimal flowchart schemes with respect to the input-output behaviour etc. Some results are new, others are simple translations in terms of feedback of previous results obtained by using Elgot’s iteration or Kleene’s repetition. The paper also contains some historical comments.

Publisher

IOS Press

Subject

Computational Theory and Mathematics,Information Systems,Algebra and Number Theory,Theoretical Computer Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey of Graphical Languages for Monoidal Categories;New Structures for Physics;2010

2. AGAPIA v0.1: A Programming Language for Interactive Systems and Its Typing System;Electronic Notes in Theoretical Computer Science;2008-05

3. Complete Axioms for Stateless Connectors;Algebra and Coalgebra in Computer Science;2005

4. A Finite Complete Set of Equations Generating Graphs;Discrete Mathematics and Theoretical Computer Science;2003

5. Normal forms for algebras of connections;Theoretical Computer Science;2002-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3