The influence of white matter hyperintensities severity on functional brain activity in cerebral small vessel disease: An rs-fMRI study

Author:

Hu Ying12,Yang Yifeng1,Hou Xuewen1,Zhou Yan2,Nie Shengdong1

Affiliation:

1. Institute of Medical Imaging Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China

2. Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Abstract

OBJECTIVE: To investigate relationships between the severity of white matter hyperintensities (WMH), functional brain activity, and cognition in cerebral small vessel disease (CSVD) based on resting-state functional magnetic resonance imaging (rs-fMRI) data. METHODS: A total of 103 subjects with CSVD were included. The amplitude of low frequency fluctuations (ALFF), regional homogeneity (ReHo), functional connectivity (FC) and their graph properties were applied to explore the influence of WMH burden on functional brain activity. We also investigated whether there are correlations between different functional brain characteristics and cognitive assessments. Finally, we selected disease-related rs-fMRI features in combination with ensemble learning to classify CSVD patients with low WMH load and with high WMH load. RESULTS: The high WMH load group demonstrated significantly abnormal functional brain activity based on rs-MRI data, relative to the low WMH load group. ALFF and graph properties in specific brain regions were significantly correlated with patients’ cognitive assessments in CSVD. Moreover, altered rs-fMRI signal can help predict the severity of WMH in CSVD patients with an overall accuracy of 92.23%. CONCLUSIONS: This study provided a comprehensive analysis and evidence for a pattern of altered functional brain activity under different WMH load in CSVD based on rs-fMRI data, enabling accurately individual prediction of status of WMH.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3