Segmental limited-angle CT reconstruction based on image structural prior

Author:

Gong Changcheng12,Shen Zhaoqiang3,He Yuanwei3

Affiliation:

1. School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing, China

2. Chongqing Key Laboratory of Social Economic and Applied Statistics, Chongqing Technology and Business University, Chongqing, China

3. College of Mathematics and Statistics, Chongqing University, Chongqing, China

Abstract

CT reconstruction from incomplete projection data is one of the key researches of X-ray CT imaging. The projection data acquired by few-view and limited-angle sampling are incomplete. In addition, few-view sampling often requires turning on and off the tube voltage, but rapid switching of tube voltage demands for high technical requirements. Limited-angle sampling is easy to realize. However, reconstructed images may encounter obvious artifacts. In this study we investigate a new segmental limited-angle (SLA) sampling strategy, which avoids rapid switching of tube voltage. Thus, the projection data has lower data correlation than limited-angle CT, which is conducive to reconstructing high-quality images. To suppress potential artifacts, we incorporate image structural prior into reconstruction model to present a reconstruction method. The limited-angle CT reconstruction experiments on digital phantoms, real carved cheese and walnut projections are used to test and verify the effectiveness of the proposed method. Several image quality evaluation indices including RMSE, PSNR, and SSIM of the reconstructions in simulation experiments are calculated and listed to show the superiority of our method. The experimental results indicate that the CT image reconstructed using the proposed new method is closer to the reference image. Images from real CT data and their residual images also show that applying the proposed new method can more effectively reduce artifacts and image structures are well preserved.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3