Differential Gait Decline in Parkinson’s Disease Enhances Discrimination of Gait Freezers from Non-Freezers

Author:

Glover Aliyah1,Pillai Lakshmi1,Doerhoff Shannon1,Virmani Tuhin12

Affiliation:

1. Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA

2. Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA

Abstract

Background: Freezing of gait (FOG) is a debilitating feature of Parkinson’s disease (PD) for which treatments are limited. To develop neuroprotective strategies, determining whether disease progression is different in phenotypic variants of PD is essential. Objective: To determine if freezers have a faster decline in spatiotemporal gait parameters. Methods: Subjects were enrolled in a longitudinal study and assessed every 3– 6 months. Continuous gait in the levodopa ON-state was collected using a gait mat (Protokinetics). The slope of change/year in spatiotemporal gait parameters was calculated. Results: 26 freezers, 31 non-freezers, and 25 controls completed an average of 6 visits over 28 months. Freezers had a faster decline in mean stride-length, stride-velocity, swing-%, single-support-%, and variability in single-support-% compared to non-freezers (p < 0.05). Gait decline was not correlated with initial levodopa dose, duration of levodopa therapy, change in levodopa dose or change in Montreal Cognitive Assessment scores (p > 0.25). Gait progression parameters were required to obtain 95% accuracy in categorizing freezers and non-freezers groups in a forward step-wise binary regression model. Change in mean stride-length, mean stride-width, and swing-% variability along with initial foot-length variability, mean swing-% and apathy scores were significant variables in the model. Conclusion: Freezers had a faster temporal decline in objectively quantified gait, and inclusion of longitudinal gait changes in a binary regression model greatly increased categorization accuracy. Levodopa dosing, cognitive decline and disease severity were not significant in our model. Early detection of this differential decline may help define freezing prone groups for testing putative treatments.

Publisher

IOS Press

Subject

Cellular and Molecular Neuroscience,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3