Idiopathic pulmonary fibrosis essential biomarkers and immunological infiltration in lung tissue are identified by a bioinformatics analysis

Author:

Zhou Sijiang1,Mo Kanglin2,Yang Xia3,Ning Zong3

Affiliation:

1. Department of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

2. Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

3. Department of General Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Abstract

OBJECTIVE: This research aims to pinpoint key biomarkers and immunological infiltration of idiopathic pulmonary fibrosis (IPF) through bioinformatics analysis. METHODS: From the GEO database, 12 gene expression profiles were obtained. The LIMMA tool in Bioconductor accustomed to identify the genes that are expressed differently (DEGs), and analyses of functional enrichment were performed. A protein-protein interaction network (PPI) was constructed using STRING and Cytoscape, and a modular analysis was performed. Analysis of the immunological infiltration of lung tissue between IPF and healthy groups was done using the CIBERSORTx method. RESULTS: 11,130 genes with differential expression (including 7,492 up-regulated and 3,638 down-regulated) were found. The selected up-regulated DEGs were mainly involved in the progression of pulmonary fibrosis and the selected down-regulated DEGs maintain the relative stability of intracellular microenvironment, according to functional enrichment analysis. KEGG enrichment analysis revealed that up-regulated DEGs were primarily abundant in the PI3K-Akt signaling mechanism, whereas down-regulated DEGs were associated with cancer pathways. The most significant modules involving 8 hub genes were found after the PPI network was analyzed. IPF lung tissue had a greater percentage of B memory cells, plasma cells, T cells follicular helper, T cells regulatory, T cells gamma delta, macrophages M0 and resting mast cells. while a relatively low proportion of T cells CD4 memory resting, NK cells resting and neutrophils. CONCLUSION: This research demonstrates the differences of hub genes and immunological infiltration in IPF.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3