Construction and application of logistics scheduling model based on heterogeneous graph neural network

Author:

Wang Lei1

Affiliation:

1. Henan College of Transportation, Zhengzhou Henan, China

Abstract

The core of logistics is scheduling and monitoring. After the modern interprise logistics development concept change, the development prospect of enterprise logistics is more optimistic. Major enterprises have begun to use intelligent logistics scheduling platforms. In order to solve the problem that heterogeneous information fusion is complex in the temporal heterogeneous graphs, this paper proposes to dynamically store and update node representation through an augmented memory matrix in a memory network. At the same time, the model also designs a novel read-write module for the memory matrix, which can effectively capture the timing information in the long interaction sequence and has high flexibility. The model has significantly improved in tasks such as node classification, timing recommendation and visualization. This paper studies the logistics supply chain of modern enterprises and establishes the mathematical model of vehicle scheduling. This paper takes the non-full load scheduling model as the critical research object. Based on the research of logistics supply chain, the vehicle scheduling model is established. The intelligent heuristic algorithm is applied to solve it, and the effective vehicle distribution scheme and driving route are formed. The simulation results show that the approximate Pareto optimal solution obtained by our designed model and algorithm has good robustness. NSGAIIROELSDR can get a better solution in small-scale scheduling. However, in large-scale numerical experiments, the final solution obtained by MOEA/DROELSDR is obviously better than that of NSGAIIROELSDR, and the running time of MOEA/DROELSDR is also shorter. Therefore, we conclude that MOEA/DROELSDR is more suitable for large-scale scheduling, and NSGAIIROELSDR is more suitable for more minor scheduling.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference17 articles.

1. Logistics demand forecasting model based on improved neural network algorithm;Ma;Journal of Intelligent & Fuzzy Systems,2021

2. Research on ecological logistics evaluation model based on BCPSGA-BP neural network;Du;Multimed Tools Appl.,2019

3. Machine learning for 5G and beyond: From model-based to data-driven mobile wireless networks;Wang;China Communications,2019

4. Multimodal interface interaction design model based on dynamic augmented reality;Kong;Multimed Tools Appl.,2019

5. Scheduling knowledge retrieval based on heterogeneous feature learning for byproduct gas system in steel industry;Liu;IFAC-PapersOnLine,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3