pygarg: A Python engine for argumentation

Author:

Mailly Jean-Guy1

Affiliation:

1. IRIT, Université Toulouse Capitole, France

Abstract

Recent advancements in algorithms for abstract argumentation make it possible now to solve reasoning problems even with argumentation frameworks of large size, as demonstrated by the results of the various editions of the International Competition on Computational Models of Argumentation (ICCMA). However, the solvers participating to the competition may be hard to use for non-expert programmers, especially if they need to incorporate these algorithms in their own code instead of simply using the command-line interface. Moreover, some ICCMA solvers focus on the ICCMA tracks, and do not implement algorithms for other problems. In this paper we describe pygarg, a Python implementation of the SAT-based approach used in the argumentation solver CoQuiAAS. Contrary to CoQuiAAS and most of the participants to the various editions of ICCMA, pygarg incorporates all problems that have been considered in the main track of any edition of ICCMA. We show how to easily use pygarg via a command-line interface inspired by ICCMA competitions, and then how it can be used in other Python scripts as a third-party library.

Publisher

IOS Press

Reference24 articles.

1. Non-monotonic Explanation Functions

2. Shedding new light on the foundations of abstract argumentation: Modularization and weak admissibility

3. P. Besnard and S. Doutre, Checking the acceptability of a set of arguments, in: 10th International Workshop on Non-monotonic Reasoning (NMR 2004), 2004, pp. 59–64, http://www.pims.math.ca/science/2004/NMR/papers.html.

4. S. Bistarelli, L. Kotthoff, F. Santini and C. Taticchi, Containerisation and dynamic frameworks in ICCMA’19, in: Proceedings of the Second International Workshop on Systems and Algorithms for Formal Argumentation (SAFA 2018) Co-Located with the 7th International Conference on Computational Models of Argument (COMMA 2018), CEUR Workshop Proceedings, Vol. 2171, CEUR-WS.org, 2018, pp. 4–9, https://ceur-ws.org/Vol-2171/paper_1.pdf.

5. A Comparative Study of Ranking-Based Semantics for Abstract Argumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3