Analysis and classification of arrhythmia types using improved firefly optimization algorithm and autoencoder model

Author:

Sinnoor Mala1,Janardhan Shanthi Kaliyil2

Affiliation:

1. Department of Electronics and Communication, Dr. Ambedkar Institute of Technology, Bengaluru, India

2. Department of Medical Electronics, Dr. Ambedkar Institute of Technology, Bengaluru, India

Abstract

In the present scenario, Electrocardiogram (ECG) is an effective non-invasive clinical tool, which reveals the functionality and rhythm of the heart. The non-stationary nature of ECG signal, noise existence, and heartbeat abnormality makes it difficult for clinicians to diagnose arrhythmia. The most of the existing models concentrate only on classification accuracy. In this manuscript, an automated model is introduced that concentrates on arrhythmia type classification using ECG signals, and also focuses on computational complexity and time. After collecting the signals from the MIT-BIH database, the signal transformation and decomposition are performed by Multiscale Local Polynomial Transform (MLPT) and Ensemble Empirical Mode Decomposition (EEMD). The decomposed ECG signals are given to the feature extraction phase for extracting features. The feature extraction phase includes six techniques: standard deviation, zero crossing rate, mean curve length, Hjorth parameters, mean Teager energy, and log energy entropy. Next, the feature dimensionality reduction and arrhythmia classification are performed utilizing the improved Firefly Optimization Algorithm and autoencoder. The selection of optimal feature vectors by the improved Firefly Optimization Algorithm reduces the computational complexity to linear and consumes computational time of 18.23 seconds. The improved Firefly Optimization Algorithm and autoencoder model achieved 98.96% of accuracy in the arrhythmia type classification, which is higher than the comparative models.

Publisher

IOS Press

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3