Affiliation:
1. School of Computer and Information Engineering, Harbin University of Commerce, Harbin, Heilongjiang, China
2. Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin, Heilongjiang, China
Abstract
Feature selection has been shown to be a highly valuable strategy in data mining, pattern recognition, and machine learning. However, the majority of proposed feature selection methods do not account for feature interaction while calculating feature correlations. Interactive features are those features that have less individual relevance with the class, but can provide more joint information for the class when combined with other features. Inspired by it, a novel feature selection algorithm considering feature relevance, redundancy, and interaction in neighborhood rough set is proposed. First of all, a new method of information measurement called neighborhood symmetric uncertainty is proposed, to measure what proportion data a feature contains regarding category label. Afterwards, a new objective evaluation function of the interactive selection is developed. Then a novel feature selection algorithm named (NSUNCMI) based on measuring feature correlation, redundancy and interactivity is proposed. The results on the nine universe datasets and five representative feature selection algorithms indicate that NSUNCMI reduces the dimensionality of feature space efficiently and offers the best average classification accuracy.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献