Affiliation:
1. Department of Chemistry, Faculty of Sciences, Trakya University Balkan Campus, Edirne, Turkey
Abstract
Natural or synthetic substances can be used to create smart medications, which can enhance cognitive performance in healthy individuals. They are frequently used to boost memory, concentration, creativity, intelligence, and motivation in the fiercely competitive world of today.To achieve optimum results, the drug should be applied to the target site at the appropriate concentration, with as few or no adverse effects as possible due to off-target actions. Recent studies have shown that such drugs, which are often used in chemotherapy, can reduce the level of discomfort cancer patients endure. In this study, metal complexes that can carry silver nanoparticles with electrical and optical properties were formed. This article examines the potential of man-made silver N-heterocyclic complexes as smart drugs. Following the synthesis of new carbene species from the Xthantine compound, metal complexes were produced for this use. The chemical structures of these carbenes and metal complexes were investigated using a variety of methods, including melting point studies, conductivity, 1H-NMR and 13C-NMR, LC-Mass, FT-IR, TGA, and UV-vis spectrophotometry. These metal complexes differ mostly due to their solubility in water. Using the disk diffusion method, the antimicrobial and antibacterial properties of silver(I)-NHC complexes were examined against Gram-positive and Gram-negative bacteria as well as fungi. It has been observed that the antimicrobial activity of 7,9-bis(2-cyanoethyl)-1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purine-9-ium silver(I)bromide compound is high. These data suggest that this compound has strong antibacterial properties.
Subject
Materials Chemistry,Inorganic Chemistry,Organic Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献