Missing data imputation in multivariate t distribution with unknown degrees of freedom using expectation maximization algorithm and its stochastic variants

Author:

Kinyanjui Paul Kimani,Tamba Cox Lwaka,Orawo Luke Akong’o,Okenye Justin Obwoge

Abstract

Many researchers encounter the missing data problem. The phenomenon may be occasioned by data omission, non-response, death of respondents, recording errors, among others. It is important to find an appropriate data imputation technique to fill in the missing positions. In this study, the Expectation Maximization (EM) algorithm and two of its stochastic variants, stochastic EM (SEM) and Monte Carlo EM (MCEM), are employed in missing data imputation and parameter estimation in multivariate t distribution with unknown degrees of freedom. The imputation efficiencies of the three methods are then compared using mean square error (MSE) criterion. SEM yields the lowest MSE, making it the most efficient method in data imputation when the data assumes the multivariate t distribution. The algorithm’s stochastic nature enables it to avoid local saddle points and achieve global maxima; ultimately increasing its efficiency. The EM and MCEM techniques yield almost similar results. Large sample draws in the MCEM’s E-step yield more or less the same results as the deterministic EM. In parameter estimation, it is observed that the parameter estimates for EM and MCEM are relatively close to the simulated data’s maximum likelihood (ML) estimates. This is not the case in SEM, owing to the random nature of the algorithm.

Publisher

IOS Press

Subject

Applied Mathematics,Modelling and Simulation,Statistics and Probability

Reference31 articles.

1. Biscarat, J. C., Celeux, G., & Diebolt, J. (1992). Stochastic versions of the EM algorithm (No. TR-227). Washington University Seattle Department of Statistics.

2. The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem;Celeux;Computational Statistics Quarterly,1985

3. Convergence of a stochastic approximation version of the EM algorithm;Delyon;Annals of Statistics,1999

4. Maximum likelihood from incomplete data via the EM algorithm;Dempster;Journal of the royal statistical society. Series B (methodological),1977

5. A new REML (parameter expanded) EM algorithm for linear mixed models;Diffey;Australian & New Zealand Journal of Statistics,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3