Developing an Image-Based Deep Learning Framework for Automatic Scoring of the Pentagon Drawing Test

Author:

Li Yike1,Guo Jiajie2,Yang Peikai3

Affiliation:

1. Department of Otolaryngology-Head and Neck Surgery, Bill Wilkerson Center, Vanderbilt University Medical Center, Nashville, TN, USA

2. State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China

3. Guangdong Yunjian Intelligent Technology Co. Ltd., Foshan, Guangdong, China

Abstract

Background: The Pentagon Drawing Test (PDT) is a common assessment for visuospatial function. Evaluating the PDT by artificial intelligence can improve efficiency and reliability in the big data era. This study aimed to develop a deep learning (DL) framework for automatic scoring of the PDT based on image data. Methods: A total of 823 PDT photos were retrospectively collected and preprocessed into black-and-white, square-shape images. Stratified fivefold cross-validation was applied for training and testing. Two strategies based on convolutional neural networks were compared. The first strategy was to perform an image classification task using supervised transfer learning. The second strategy was designed with an object detection model for recognizing the geometric shapes in the figure, followed by a predetermined algorithm to score based on their classes and positions. Results: On average, the first framework demonstrated 62%accuracy, 62%recall, 65%precision, 63%specificity, and 0.72 area under the receiver operating characteristic curve. This performance was substantially outperformed by the second framework, with averages of 94%, 95%, 93%, 93%, and 0.95, respectively. Conclusion: An image-based DL framework based on the object detection approach may be clinically applicable for automatic scoring of the PDT with high efficiency and reliability. With a limited sample size, transfer learning should be used with caution if the new images are distinct from the previous training data. Partitioning the problem-solving workflow into multiple simple tasks should facilitate model selection, improve performance, and allow comprehensible logic of the DL framework.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3