An intelligent atrous convolution-based cascaded deep learning framework for enhanced privacy preservation performance in edge computing

Author:

Siryeh Fatima Abu1,Ibrahim Abdullahi Abdu1

Affiliation:

1. Electrical and Computer Engineering Department, Altinbas University, Mahmutbey, 34217, İstanbul, Türkiye

Abstract

A system without any communication delays, called edge computing, has been introduced for nearer and faster services. The major concern in the edge computing scenario is its privacy risks. A user, as well as a cloud data preservation scheme, is the main aim of this paperwork. Test data is given by the user to access the cloud-based data processing framework. The training of the suitable model is carried out by utilizing the data stored in the cloud. The suggested model divides the entire model into two sections, namely, the untrusted cloud and the trusted edge. On the trusted edge side the data is directly provided to the developed advanced deep learning model called the Atrous Convolution based Cascaded Deep Temporal Convolution Network (ACC-DTCN) for the data analysis process. However, instead of giving the whole data directly to the untrusted cloud side, the test data is protected on the cloud side by utilizing a hybrid encryption technique called the Optimal Hybrid Encryption Model (OHEM). Both Attribute-Based Encryption (ABE) and Homomorphic Encryption (HE) are utilized in the recommended OHEM scheme. The OHEM variables are tuned with the help of an advanced algorithm called the Enhanced Ladybug Beetle Optimization algorithm (ELBOA). The confidence score vector among the testing and training data is predicted by the implemented ACC-DTCN model by utilizing the encrypted data on the cloud side. The suggested privacy preservation scheme provides higher prediction accuracy and prevents interference attacks while contrasting it against conventional methods during extensive experimentations.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3