The Inverse Data Law: Market Imperatives, Data, and Quality in AI Supported Care

Author:

Ameen Saleem1,Wong Ming Chao2,Yee Kwang Chien1,Nøhr Christian3,Turner Paul2

Affiliation:

1. Tasmanian School of Medicine, University of Tasmania, Australia

2. School of Information and Communication Technology, University of Tasmania, Australia

3. Department of Planning, Aalborg University, Denmark

Abstract

Over the last decade, the explosion of “Big Data” and its fusion with AI has led many to believe that the development and integration of AI systems in healthcare will usher in a transformative revolution that democratises access to high quality healthcare and collectively improve patient outcomes. However, the nature of market forces in the evolving data economy, has started to show evidence that the opposite is more likely to be true. This paper argues that there is a poorly understood “Inverse Data Law” that will exacerbate the widening health divide between affluent and marginalised communities because: (1) data used to train AI systems favour individuals that are already engaged with healthcare, who have the lowest burden of disease, but the highest purchasing power; and (2) data used to drive market decisions around investment in AI health technology favours tools that increase the commodification of healthcare through over-testing, over-diagnosis, and the acute and episodic management of disease, over tools that support the patient to prevent disease. This dangerous combination is more likely to cripple efforts towards preventative medicine, as data collection and utilisation tends to be inversely proportional to the needs of the patients served – the inverse data law. The paper concludes by introducing important methodological considerations in the design and evaluation of AI systems to promote systems improvement for marginalised users.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3