Local Data Quality Assessments on EHR-Based Real-World Data for Rare Diseases

Author:

Tahar Kais1,Verbuecheln Raphael2,Martin Tamara3,Graessner Holm3,Krefting Dagmar1

Affiliation:

1. Institute of Medical Informatics, University Medical Center Göttingen, Germany

2. Medical Data Integration Center, University Hospital Tübingen, Germany

3. Centre for Rare Diseases, University Hospital Tübingen, Germany

Abstract

The project “Collaboration on Rare Diseases” CORD-MI connects various university hospitals in Germany to collect sufficient harmonized electronic health record (EHR) data for supporting clinical research in the field of rare diseases (RDs). However, the integration and transformation of heterogeneous data into an interoperable standard through Extract-Transform-Load (ETL) processes is a complex task that may influence the data quality (DQ). Local DQ assessments and control processes are needed to ensure and improve the quality of RD data. We therefore aim to investigate the impact of ETL processes on the quality of transformed RD data. Seven DQ indicators for three independent DQ dimensions were evaluated. The resulting reports show the correctness of calculated DQ metrics and detected DQ issues. Our study provides the first comparison results between the DQ of RD data before and after ETL processes. We found that ETL processes are challenging tasks that influence the quality of RD data. We have demonstrated that our methodology is useful and capable of evaluating the quality of real-world data stored in different formats and structures. Our methodology can therefore be used to improve the quality of RD documentation and to support clinical research.

Publisher

IOS Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FAIRe Gesundheitsdaten im nationalen und internationalen Datenraum;Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz;2024-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3