Optimization of intelligent recommendation of innovation and entrepreneurship projects based on collaborative filtering algorithm

Author:

Xu Yiying1,Liu Yi2,Zhang Fen3,Yu Haili1,Jiang Yuanling4

Affiliation:

1. Academic Affairs Office of Jiangsu University, Zhenjiang, Jiangsu, China

2. School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, Jiangsu, China

3. Student Work Department of Jiangsu University, Zhenjiang, Jiangsu, China

4. School of Foreign Languages, Jiangsu University, Zhenjiang, Jiangsu, China

Abstract

The advent of the information age has made accurate search for information a challenge. In this paper, we analyze intelligent recommendations for innovative entrepreneurial projects based on collaborative filtering algorithms. Collaborative filtering is one of the most widely used and successful techniques in recommendation systems. In this paper, an interest migration function plus time is introduced to address the shortcomings of traditional collaborative filtering recommendation algorithms. Meanwhile, this paper builds an intelligent recommendation engine system for innovative entrepreneurial projects based on the Hadoop open-source distributed computing framework, sustainable PSCM, and Mahout collaborative filtering recommendation engine technology. This paper uses experiments to test and evaluate the overall performance of the distributed recommendation platform and the improved collaborative filtering recommendation algorithm. It is found that the algorithm outperforms similar algorithms in terms of data volume and coverage of recommended innovation and entrepreneurship projects. This is sufficient to show that the collaborative filtering algorithm and sustainable PSCM are useful for the intelligent recommendation analysis of innovative entrepreneurial projects.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3