In-Depth Proteomic Analysis of De Novo Proteome in a Mouse Model of Alzheimer’s Disease

Author:

Wang Xin1,Zhou Xueyan1,Lee Jingyun2,Furdui Cristina M.2,Ma Tao134

Affiliation:

1. Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA

2. Department of Internal Medicine-Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA

3. Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA

4. Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA

Abstract

Background: Alzheimer’s disease (AD) is the most common dementia syndrome in the elderly characterized by synaptic failure and unique brain pathology. De novo protein synthesis is required for the maintenance of memory and synaptic plasticity. Mounting evidence links impaired neuronal protein synthesis capacity and overall protein synthesis deficits to AD pathogenesis. Meanwhile, identities of AD-associated dysregulation of “newly synthesized proteome” remain elusive. Objective: To investigate de novo proteome alterations in the hippocampus of aged Tg19959 AD model mice. Methods: In this study, we combined the bioorthogonal noncanonical amino acid tagging (BONCAT) method with the unbiased large-scale proteomic analysis in acute living brain slices (we name it “BONSPEC”) to investigate de novo proteome alterations in the hippocampus of Tg19959 AD model mice. We further applied multiple bioinformatics methods to analyze in-depth the proteomics data. Results: In total, 1,742 proteins were detected across the 10 samples with the BONSPEC method. After exclusion of those only detected in less than half of the samples in both groups, 1,362 proteins were kept for further analysis. 37 proteins were differentially expressed (based on statistical analysis) between the WT and Tg19959 groups. Among them, 19 proteins were significantly decreased while 18 proteins were significantly increased in the hippocampi of Tg19959 mice compared to WT mice. The results suggest that proteins involved in synaptic function were enriched in de novo proteome of AD mice. Conclusion: Our study could provide insights into the future investigation into the molecular signaling mechanisms underlying AD and related dementias (ADRDs).

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3