Blueberry bud freeze damage detection using optical sensors: Identification of spectral features through hyperspectral imagery

Author:

Gao Zongmei1,Zhao Yanru12,Hoheisel Gwen-Alyn13,Khot Lav R.1,Zhang Qin1

Affiliation:

1. Department of Biological Systems Engineering, Center for Precision and Automated Agricultural Systems, Washington State University, Prosser, WA, USA

2. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, PR China

3. Extension, Washington State University, Prosser, WA, USA

Abstract

BACKGROUND: Highbush blueberry (Vaccinium corymbosum), the species primarily grown in the state of Washington, U.S., is relatively cold hardy. However, low temperatures in winter and early spring can still cause freeze damage to the buds. OBJECTIVE: This study explored hyperspectral imaging (HSI) for detecting freeze induced bud damage. Blueberry buds (c.v. Duke) were collected over two seasons and tested in the laboratory to detect damage at four typical phenological stages. METHODS: The HSI data was acquired via line scan HSI system with spectral wavelength ranging from 517 to 1729 nm for buds grouped into either normal or injured mortalities. The successive projection algorithm was employed for pertinent feature wavelength selection. Analysis of variance and linear regression were then applied for evaluating sensitivity of feature wavelengths. RESULTS: Overall, five salient wavelengths (706, 723, 872, 1384, and 1591 nm) were selected to detect bud freeze injury. A quadratic discriminant analysis method-based analysis verified reliability of these five wavelengths in bud damage detection with overall accuracy in the ranges of 64 to 82%for the test datasets of each stage in two seasons. CONCLUSIONS: This study indicated potential of optical sensing to identify the injured buds using five salient wavelengths.

Publisher

IOS Press

Subject

Horticulture,Plant Science,Soil Science,Agronomy and Crop Science,Biochemistry,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3