Degradation of Amyloid-β Species by Multi-Copper Oxidases

Author:

Yang Jing12,Ran Kathleen1,Ma Wenzhe3,Chen Yanshi1,Chen Yanxin1,Zhang Can4,Ye Hui5,Lu Ying3,Ran Chongzhao1

Affiliation:

1. Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, MA, USA

2. School of Engineering, China Pharmaceutical University, Nanjing, China

3. Department of System Biology, Harvard Medical School, Boston, MA, USA

4. Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA

5. Department of Biology, Loyola University Chicago, IL, USA

Abstract

Background: Reduction of the production of amyloid-β (Aβ) species has been intensively investigated as potential therapeutic approaches for Alzheimer’s disease (AD). However, the degradation of Aβ species, another potential beneficial approach, has been far less explored. Objective: To investigate the potential of multi-copper oxidases (MCOs) in degrading Aβ peptides and their potential benefits for AD treatment. Methods: We investigated the degradation efficiency of MCOs by using electrophoresis and validated the ceruloplasmin (CP)-Aβ interaction using total internal reflection fluorescence microscopy, fluorescence photometer, and fluorescence polarization measurement. We also investigated the therapeutic effect of ascorbate oxidase (AO) by using induced pluripotent stem (iPS) neuron cells and electrophysiological analysis with brain slices. Results: We discovered that CP, an important MCO in human blood, could degrade Aβ peptides. We also found that other MCOs could induce Aβ degradation as well. Remarkably, we revealed that AO had the strongest degrading effect among the tested MCOs. Using iPS neuron cells, we observed that AO could rescue neuron toxicity which induced by Aβ oligomers. In addition, our electrophysiological analysis with brain slices suggested that AO could prevent an Aβ-induced deficit in synaptic transmission in the hippocampus. Conclusions: To the best of our knowledge, our report is the first to demonstrate that MCOs have a degrading function for peptides/proteins. Further investigations are warranted to explore the possible benefits of MCOs for future AD treatment.

Publisher

IOS Press

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3