Feature selection for incomplete set-valued data

Author:

Li Lulu1

Affiliation:

1. College of Computer Science and Engineering, Yulin Normal University, Yulin, Guangxi, P.R.China

Abstract

Set-valued data is a significant kind of data, such as data obtained from different search engines, market data, patients’ symptoms and behaviours. An information system (IS) based on incomplete set-valued data is called an incomplete set-valued information system (ISVIS), which generalized model of a single-valued incomplete information system. This paper gives feature selection for an ISVIS by means of uncertainty measurement. Firstly, the similarity degree between two information values on a given feature of an ISVIS is proposed. Then, the tolerance relation on the object set with respect to a given feature subset in an ISVIS is obtained. Next, λ-reduction in an ISVIS is presented. What’s more, connections between the proposed feature selection and uncertainty measurement are exhibited. Lastly, feature selection algorithms based on λ-discernibility matrix, λ-information granulation, λ-information entropy and λ-significance in an ISVIS are provided. In order to better prove the practical significance of the provided algorithms, a numerical experiment is carried out, and experiment results show the number of features and average size of features by each feature selection algorithm.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference23 articles.

1. Sequential covering rule induction algorithm for variable consistency rough set approaches;Blaszczynski;Information Sciences,2011

2. Attribute selection with fuzzy decision reducts;Cornelis;Information Sciences,2010

3. Attribute reduction of set-valued information systems based on a tolerance relation;Chen;Computer Science,2010

4. Entropy measures and granularity measures for set-valued information systems;Dai;Information Sciences,2013

5. Fuzzy rough set model for set-valued data;Dai;Fuzzy Sets and Systems,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3