Document image binarization using difference of concatenated convolutions

Author:

Jyothi R.L.1,Rahiman M. Abdul2

Affiliation:

1. University of Kerala

2. LBS Center for Science and Technology

Abstract

Binarization is the most important stage in historical document image processing. Efficient working of character and word recognition algorithms depend on effective segmentation methods. Segmentation algorithms in turn depend on images free of noises and degradations. Most of these historical documents are illegible with degradations like bleeding through degradation, faded ink or faint characters, uneven illumination, contrast variation, etc. For effective processing of these document images, efficient binarization algorithms should be devised. Here a simple modified version of the Convolutional Neural Network (CNN) is proposed for historical document binarization. AOD-Net architecture for generating dehazed images from hazed images is modified to create the proposed network.The new CNN model is created by incorporating Difference of Concatenation layer (DOC), Enhancement layer (EN) and Thresholding layer into AOD-Net to make it suitable for binarization of highly degraded document images. The DOC layer and EN layer work effectively in solving degradation that exists in the form of low pass noises. The complexity of working of the proposed model is reduced by decreasing the number of layers and by introducing filters in convolution layers that work with low inter-pixel dependency. This modified version of CNN works effectively with a variety of highly degraded documents when tested with the benchmark historical datasets. The main highlight of the proposed network is that it works efficiently in a generalized manner for any type of document images without further parameter tuning. Another important highlight of this method is that it can handle most of the degradation categories present in document images. In this work, the performance of the proposed model is compared with Otsu, Sauvola, and three recent Deep Learning-based models.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference11 articles.

1. Operation useful for similarity-invariant patternrecognition;Doyle;J Assoc Comput Mach,1962

2. Picture thresholding using aniterative selection method;Ridler;IEEE Trans Syst Man Cybern,1978

3. Histogram modification for thresholdselection,6. 10./TSMC;John;NASA STI/Recon Technical Report,1979

4. A new method for gray-level picture thresholding using theentropy of the histogram;Pun;Signal Process,1980

5. A new method for gray-levelpicture thresholding using the entropy of the histogram,;Kapur;ComputVision Graphics Image Process,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3