From granulation-degranulation mechanisms to fuzzy rule-based models: Augmentation of granular-based models with a double fuzzy clustering

Author:

Xu Kaijie1,E Hanyu2,Quan Yinghui1,Cui Ye2,Nie Weike3

Affiliation:

1. School of Electronic Engineering, Xidian University, Xi’an, China

2. Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6R 2V4, Canada

3. School of Information Science and Technology, Northwest University, Xi’an, China

Abstract

In this study, we develop a novel clustering with double fuzzy factors to enhance the performance of the granulation-degranulation mechanism, with which a fuzzy rule-based model is designed and demonstrated to be an enhanced one. The essence of the developed scheme is to optimize the construction of the information granules so as to eventually improve the performance of the fuzzy rule-based models. In the design process, a prototype matrix is defined to express the Fuzzy C-Means based granulation-degranulation mechanism in a clear manner. We assume that the dataset degranulated from the formed information granules is equal to the original numerical dataset. Then, a clustering method with double fuzzy factors is derived. We also present a detailed mathematical proof for the proposed approach. Subsequently, on the basis of the enhanced version of the granulation-degranulation mechanism, we design a granular fuzzy model. The whole design is mainly focused on an efficient application of the fuzzy clustering to build information granules used in fuzzy rule-based models. Comprehensive experimental studies demonstrate the performance of the proposed scheme.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3