Optimization of milling parameters considering high efficiency and low carbon based on gravity search algorithm

Author:

Xing Shixiong12,Chen Guohua3,Yu Guoming2,Chen Xiaolan12,Sun Chuan12

Affiliation:

1. School of Electromechanical and Automobile Engineering, Huanggang Normal University, Huanggang, Hubei, China

2. Hubei Zhongke Research Institute of Industrial Technology, Huanggang Normal University, Huanggang, Hubei, China

3. School of Mechanical Engineering of Hubei University of Arts and Science, Xiangyang, Hubei, China

Abstract

According to the characteristics of NC milling, an approach for optimization of milling parameters considering high efficiency and low carbon based on gravity search algorithm is proposed. Taking the carbon emission and processing time as the objectives, the cutting rate, feed per tooth, and cutting width as the optimization variables. A multi-objective optimization model of NC milling parameters is established. An non-dominated sorting gravity search algorithm (NSGSA) is used to solve the multi-objective model, and the position update backoff operation is introduced. Finally, taking NC machining process as an example, the multi-objective optimization results and the single objective optimization results are compared respectively, the actual data show that when the optimization objective is high efficiency and low carbon, the processing time and carbon emissions are 173 and 192 respectively. The comparison results show that the combination of processing parameters obtained by multi-objective optimization is the best, the optimal parameter combination obtained by NSGSA algorithm is verified by grey correlation analysis, and the grey correlation degree of the optimal solution set is 0.81, which is the largest in all solution sets. This approach can help the decision-makers flexibly select the corresponding milling parameters, and provide decision-makers with flexible selection decisions suitable for various scenarios.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3