Image emotion distribution learning based on enhanced fuzzy KNN algorithm with sparse learning

Author:

Zhu Yunwen1,Zhang Wenjun2,Zhang Meixian1,Zhang Ke1,Zhu Yonghua1

Affiliation:

1. Shanghai Film Academy, Shanghai University, Shanghai, China

2. College of Information Technology, Shanghai Jian Qiao University, Shanghai, China

Abstract

With the trend of people expressing opinions and emotions via images online, increasing attention has been paid to affective analysis of visual content. Traditional image affective analysis mainly focuses on single-label classification, but an image usually evokes multiple emotions. To this end, emotion distribution learning is proposed to describe emotions more explicitly. However, most current studies ignore the ambiguity included in emotions and the elusive correlations with complex visual features. Considering that emotions evoked by images are delivered through various visual features, and each feature in the image may have multiple emotion attributes, this paper develops a novel model that extracts multiple features and proposes an enhanced fuzzy k-nearest neighbor (EFKNN) to calculate the fuzzy emotional memberships. Specifically, the multiple visual features are converted into fuzzy emotional memberships of each feature belonging to emotion classes, which can be regarded as an intermediate representation to bridge the affective gap. Then, the fuzzy emotional memberships are fed into a fully connected neural network to learn the relationships between the fuzzy memberships and image emotion distributions. To obtain the fuzzy memberships of test images, a novel sparse learning method is introduced by learning the combination coefficients of test images and training images. Extensive experimental results on several datasets verify the superiority of our proposed approach for emotion distribution learning of images.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A supervised contrastive learning-based model for image emotion classification;World Wide Web;2024-04-24

2. An Image Emotion Classification Method Based on Supervised Contrastive Learning;2023 8th International Conference on Data Science in Cyberspace (DSC);2023-08-18

3. Doubled coupling for image emotion distribution learning;Knowledge-Based Systems;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3