Chapter 17. Logic Tensor Networks: Theory and Applications

Author:

Serafini Luciano1,d’Avila Garcez Artur2,Badreddine Samy3,Donadello Ivan4,Spranger Michael5,Bianchi Federico6

Affiliation:

1. FBK, Trento, Italy

2. City, University of London, UK

3. Sony AI, Japan

4. Free University of Bozen-Bolzano, Italy

5. Sony AI, Sony CSL, Japan

6. Bocconi Univesity, Milan, Italy

Abstract

The recent availability of large-scale data combining multiple data modalities has opened various research and commercial opportunities in Artificial Intelligence (AI). Machine Learning (ML) has achieved important results in this area mostly by adopting a sub-symbolic distributed representation. It is generally accepted now that such purely sub-symbolic approaches can be data inefficient and struggle at extrapolation and reasoning. By contrast, symbolic AI is based on rich, high-level representations ideally based on human-readable symbols. Despite being more explainable and having success at reasoning, symbolic AI usually struggles when faced with incomplete knowledge or inaccurate, large data sets and combinatorial knowledge. Neurosymbolic AI attempts to benefit from the strengths of both approaches combining reasoning with complex representation of knowledge and efficient learning from multiple data modalities. Hence, neurosymbolic AI seeks to ground rich knowledge into efficient sub-symbolic representations and to explain sub-symbolic representations and deep learning by offering high-level symbolic descriptions for such learning systems. Logic Tensor Networks (LTN) are a neurosymbolic AI system for querying, learning and reasoning with rich data and abstract knowledge. LTN introduces Real Logic, a fully differentiable first-order language with concrete semantics such that every symbolic expression has an interpretation that is grounded onto real numbers in the domain. In particular, LTN converts Real Logic formulas into computational graphs that enable gradient-based optimization. This chapter presents the LTN framework and illustrates its use on knowledge completion tasks to ground the relational predicates (symbols) into a concrete interpretation (vectors and tensors). It then investigates the use of LTN on semi-supervised learning, learning of embeddings and reasoning. LTN has been applied recently to many important AI tasks, including semantic image interpretation, ontology learning and reasoning, and reinforcement learning, which use LTN for supervised classification, data clustering, semi-supervised learning, embedding learning, reasoning and query answering. The chapter presents some of the main recent applications of LTN before analyzing results in the context of related work and discussing the next steps for neurosymbolic AI and LTN-based AI models.

Publisher

IOS Press

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Conformance Checking of Fuzzy Logs Against Declarative Temporal Specifications;Lecture Notes in Computer Science;2024

2. Enhancing Neuro-Symbolic Integration with Focal Loss: A Study on Logic Tensor Networks;Lecture Notes in Computer Science;2024

3. PROTOtypical Logic Tensor Networks (PROTO-LTN) for Zero Shot Learning;2022 26th International Conference on Pattern Recognition (ICPR);2022-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3