Discrimination between parkinsonian tremor and essential tremor using artificial neural network with hybrid features

Author:

Hossen Abdulnasir

Abstract

BACKGROUND: Essential tremor (ET) and the tremor in Parkinson’s disease (PD) are the two most common pathological tremors with a certain overlap in the clinical presentation. OBJECTIVE: The main purpose of this work is to use an artificial neural network to select the best features and to discriminate between the two types of tremors. The features used are of hybrid type obtained from two different algorithms: the statistical signal characterization (SSC) of the signal describing its morphology, and the soft-decision wavelet-decomposition (SDWD) features extracted from the accelerometer and surface EMG signals. METHODS: The SSC method is used to obtain morphology-based features of the spectrum of the accelerometer and two surface EMG signals. The SDWD technique is used in this work to obtain the approximate spectral representation of both accelerometer and the two surface EMG signals. Two sets of data (training and test) are used in this paper. The training set consists of 21 ET subjects and 19 PD subjects, while the test set consists of 20 ET and 20 PD subjects. A neural network of the type feed forward back propagation has been used to combine best SSC features and best SDWD features of the accelerometer and EMG signals. RESULTS: Efficiency result of 92.5% was obtained using best hybrid features. CONCLUSIONS: The artificial neural network has been used successfully to combine two types of features in an automatic discrimination system between PD and ET.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

Reference22 articles.

1. Movement disorders;Harris;Med Clin. North America.,2009

2. Consensus statement of the movement disorder society on tremor. Ad hoc scientific committee;Deuschl;Mov Disorder.,1998

3. Parkinson’s disease is overdiagnosed clinically at baseline in diagnostically uncertain cases: 3-year European multicenter study with repeat [(123)] FP-CIT SPECT;Marshall;Mov Disord.,2008

4. [(123)I]-FP-CIT SPECT and oldfaction test in patients with combined postural and rest tremor;Djaldetti;J. Neural Transm.,2008

5. Cost-effectiveness of [(123)I]-FP-CIT-SPECT in the differential diagnosis of essential tremor and Parkinson’s disease in Italy;Antonini;Mov Disord.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3