Affiliation:
1. Interactive Graphics and Simulation Group, University of Innsbruck, Innsbruck, Austria
2. Computer Assisted Research and Development Group, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
Abstract
BACKGROUND: Accurate segmentation of connective soft tissues in medical images is very challenging, hampering the generation of geometric models for bio-mechanical computations. Alternatively, one could predict ligament insertion sites and then approximate the shapes, based on anatomical knowledge and morphological studies. OBJECTIVE: In this work, we describe an integrated framework for automatic modelling of human musculoskeletal ligaments. METHOD: We combine statistical shape modelling with geometric algorithms to automatically identify insertion sites, based on which geometric surface/volume meshes are created. As clinical use case, the framework has been applied to generate models of the forearm interosseous membrane. Ligament insertion sites in the statistical model were defined according to anatomical predictions following a published approach. RESULTS: For evaluation we compared the generated sites, as well as the ligament shapes, to data obtained from a cadaveric study, involving five forearms with 15 ligaments. Our framework permitted the creation of models approximating ligaments’ shapes with good fidelity. However, we found that the statistical model trained with the state-of-the-art prediction of the insertion sites was not always reliable. Average mean square errors as well as Hausdorff distances of the meshes could increase by an order of magnitude, as compared to employing known insertion locations of the cadaveric study. Using those, an average mean square error of 0.59 mm and an average Hausdorff distance of less than 7 mm resulted, for all ligaments. CONCLUSIONS: The presented approach for automatic generation of ligament shapes from insertion points appears to be feasible but the detection of the insertion sites with a SSM is too inaccurate, thus making a patient-specific approach necessary.
Subject
Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics
Reference39 articles.
1. Fürnstahl P. Computer-assisted planning for orthopedic surgery. vol. 64. ETH Zurich, 2010.
2. Correction of post-traumatic wrist deformity in adults by osteotomy, bone-grafting, and internal fixation;Fernandez;J Bone Joint Surg Am.,1982
3. Correction of forearm malunion guided by the preoperative complaint;Nagy;Clinical Orthopaedics and Related Research.,2008
4. The Biomechanical Effect of the Distal Interosseous Membrane on Distal Radioulnar Joint Stability: A Preliminary Anatomic Study;Kitamura;The Journal of Hand Surgery.,2011
5. Pfaeffle J, Weiss J, Gardiner J, Fischer K, Manson T, Tomaino M, et al. The stress and strain distribution in the interosseous ligament of the human forearm varies with forearm rotation. In: Trans 46th Meeting Orthop Res Soc. vol. 25; 2000. p. 140.