Prediction of lung cancer immunotherapy response via machine learning analysis of immune cell lineage and surface markers

Author:

Mueller Alex N.1,Morrisey Samantha2,Miller Hunter A.3,Hu Xiaoling2,Kumar Rohit14,Ngo Phuong T.14,Yan Jun2345,Frieboes Hermann B.3467

Affiliation:

1. School of Medicine, University of Louisville, Louisville, KY, USA

2. Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY, USA

3. Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA

4. UofL Health – Brown Cancer Center, University of Louisville, Louisville, KY, USA

5. Department of Surgery, University of Louisville, Louisville, KY, USA

6. Center for Predictive Medicine, University of Louisville, Louisville, KY, USA

7. Department of Bioengineering, University of Louisville, Louisville, KY, USA

Abstract

BACKGROUND: Although advances have been made in cancer immunotherapy, patient benefits remain elusive. For non-small cell lung cancer (NSCLC), monoclonal antibodies targeting programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) have shown survival benefit compared to chemotherapy. Personalization of treatment would be facilitated by a priori identification of patients likely to benefit. OBJECTIVE: This pilot study applied a suite of machine learning methods to analyze mass cytometry data of immune cell lineage and surface markers from blood samples of a small cohort (n= 13) treated with Pembrolizumab, Atezolizumab, Durvalumab, or Nivolumab as monotherapy. METHODS: Four different comparisons were evaluated between data collected at an initial visit (baseline), after 12-weeks of immunotherapy, and from healthy (control) samples: healthy vs patients at baseline, Responders vs Non-Responders at baseline, Healthy vs 12-week Responders, and Responders vs Non-Responders at 12-weeks. The algorithms Random Forest, Partial Least Squares Discriminant Analysis, Multi-Layer Perceptron, and Elastic Net were applied to find features differentiating between these groups and provide for the capability to predict outcomes. RESULTS: Particular combinations and proportions of immune cell lineage and surface markers were sufficient to accurately discriminate between the groups without overfitting the data. In particular, markers associated with the B-cell phenotype were identified as key features. CONCLUSIONS: This study illustrates a comprehensive machine learning analysis of circulating immune cell characteristics of NSCLC patients with the potential to predict response to immunotherapy. Upon further evaluation in a larger cohort, the proposed methodology could help guide personalized treatment selection in clinical practice.

Publisher

IOS Press

Subject

Cancer Research,Genetics,Oncology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3