Regulation Modelling and Analysis Using Machine Learning During the Covid-19 Pandemic in Russia

Author:

Trofimov Egor1,Metsker Oleg2,Kopanitsa Georgy3,Pashoshev David3

Affiliation:

1. The All-Russian State University of Justice, Moscow, Russia

2. Almazov National Medical Research Centre, Saint-Petersburg, Russia

3. ITMO University, Saint-Petersburg, Russia

Abstract

Due to the specific circumstances related to the COVID-19 pandemic, many countries have enforced emergency measures such as self-isolation and restriction of movement and assembly, which are also directly affecting the functioning of their respective public health and judicial systems. The goal of this study is to identify the efficiency of the criminal sanctions in Russia that were introduced in the beginning of COVID-19 outbreak using machine learning methods. We have developed a regression model for the fine handed out, using random forest regression and XGBoost regression, and calculated the features importance parameters. We have developed classification models for the remission of the penalty and for setting a sentence using a gradient boosting classifier.

Publisher

IOS Press

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3